1.

The equation of a curve is $y = \cos 2x + 2 \sin x$. Find \overline{dx} and hence find the coordinates of the stationary points on the curve for $0 < x < \pi$.

dy

[6]

2. In this question you must show detailed reasoning.

Find the gradient of the curve $y = 3 \cos 2x$ at the point where $x = \frac{1}{8}\pi$. [4]

END OF QUESTION paper

Mark scheme

Questic	n Answer/Indicative content	Marks	Part marks and guidance	
1	Use of	M1	Seen anywhere in the solution	
	$\sin 2x = +/-2 \sin x \cos x \text{ or}$ $\cos\left(\frac{\pi}{2} - 2x\right)$ $+/-$ $\cos(2x = +/-2\cos^2 x +/-1 \text{ etc})$			
	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}=\right)_{-2\sin 2x(\mathrm{or}-4\sin x\cos x);\ +2\cos x}$	B1,B1		
	their $\frac{dy}{dx} = 0$	*M1		
	(π) (π^{2}) $(5\pi^{2})$		-1(once) for using degrees in an an answer instead of radians.	
	$\left(\frac{\pi}{2},1\right)$; $\left(\frac{\pi}{6},\frac{3}{2}\right)$ and $\left(\frac{5\pi}{6},\frac{3}{2}\right)$	dep* A1; A1	If B0 & amp; / or B0 <u>because of</u> <u>sign error</u> , allow A1 to be awarded $\left(\frac{\pi}{2}, 1\right)$	SC If A0 but all 3 <i>x</i> -values are correct, award SC A1
				SC B2 for 3 ✓ answers without working
			Examiner's Comments	
			This relatively simple-looking question did test a number of useful features: the differentiation of cos $2x$, the solution of sin $2x = \cos x$ and, finally, the solution of sin $x = \frac{1}{2}$ for $0 < x < \pi$. The majority of candidates passed the first test but failed the second and third. Most divided each side of the equation by $\cos x$ without considering the possibility of $\cos x$ being 0 and a similar number forgot that $\frac{5}{6}\pi$ was also a solution of the equation $\sin x = \frac{1}{2}$.	
			Although the sin $2x$ formula was generally used correctly at the end of the first main stage, it was surprising how many decided to use the double-angle formula for $\cos 2x$ at the beginning; unfortunately the derivative of $\cos^2 x$	

Gradients and Differentiation of Standard Functions

1	1	1 1		Gradients and Differentiation of Standard Functions		
					often proved more problematic than that of cos2x.	
			Total	6		
2			$\frac{dy}{dx} = -6\sin 2x$ Substitute $x = \frac{1}{8}\pi_{n}$ attempt at first derivative Obtain $-3\sqrt{2}$	M1(AO1.1) A1(AO1.1) M1(AO1.1) A1(AO1.1) [4]	For $k \sin 2x$ For completely correct derivative oe, e.g. $-\frac{6}{\sqrt{2}}$	
			Total	4		